Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

57 Modules
 57.1 Generating modules
 57.2 Submodules
 57.3 Free Modules

57 Modules

57.1 Generating modules

57.1-1 IsLeftOperatorAdditiveGroup
‣ IsLeftOperatorAdditiveGroup( D )( category )

A domain D lies in IsLeftOperatorAdditiveGroup if it is an additive group that is closed under scalar multiplication from the left, and such that λ * ( x + y ) = λ * x + λ * y for all scalars λ and elements x, y ∈ D (here and below by scalars we mean elements of a domain acting on D from left or right as appropriate).

57.1-2 IsLeftModule
‣ IsLeftModule( M )( category )

A domain M lies in IsLeftModule if it lies in IsLeftOperatorAdditiveGroup, and the set of scalars forms a ring, and (λ + μ) * x = λ * x + μ * x for scalars λ, μ and x ∈ M, and scalar multiplication satisfies λ * (μ * x) = (λ * μ) * x for scalars λ, μ and x ∈ M.

gap> V:= FullRowSpace( Rationals, 3 );
( Rationals^3 )
gap> IsLeftModule( V );
true

57.1-3 GeneratorsOfLeftOperatorAdditiveGroup
‣ GeneratorsOfLeftOperatorAdditiveGroup( D )( attribute )

returns a list of elements of D that generates D as a left operator additive group.

57.1-4 GeneratorsOfLeftModule
‣ GeneratorsOfLeftModule( M )( attribute )

returns a list of elements of M that generate M as a left module.

gap> V:= FullRowSpace( Rationals, 3 );;
gap> GeneratorsOfLeftModule( V );
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]

57.1-5 AsLeftModule
‣ AsLeftModule( R, D )( operation )

if the domain D forms an additive group and is closed under left multiplication by the elements of R, then AsLeftModule( R, D ) returns the domain D viewed as a left module.

gap> coll:= [[0*Z(2),0*Z(2)], [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)]];
[ [ 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ],
  [ Z(2)^0, Z(2)^0 ] ]
gap> AsLeftModule( GF(2), coll );
<vector space of dimension 2 over GF(2)>

57.1-6 IsRightOperatorAdditiveGroup
‣ IsRightOperatorAdditiveGroup( D )( category )

A domain D lies in IsRightOperatorAdditiveGroup if it is an additive group that is closed under scalar multiplication from the right, and such that ( x + y ) * λ = x * λ + y * λ for all scalars λ and elements x, y ∈ D.

57.1-7 IsRightModule
‣ IsRightModule( M )( category )

A domain M lies in IsRightModule if it lies in IsRightOperatorAdditiveGroup, and the set of scalars forms a ring, and x * (λ + μ) = x * λ + x * μ for scalars λ, μ and x ∈ M, and scalar multiplication satisfies (x * μ) * λ = x * (μ * λ) for scalars λ, μ and x ∈ M.

57.1-8 GeneratorsOfRightOperatorAdditiveGroup
‣ GeneratorsOfRightOperatorAdditiveGroup( D )( attribute )

returns a list of elements of D that generates D as a right operator additive group.

57.1-9 GeneratorsOfRightModule
‣ GeneratorsOfRightModule( M )( attribute )

returns a list of elements of M that generate M as a left module.

57.1-10 LeftModuleByGenerators
‣ LeftModuleByGenerators( R, gens[, zero] )( operation )

returns the left module over R generated by gens.

gap> coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;
gap> V:= LeftModuleByGenerators( GF(16), coll );
<vector space over GF(2^4), with 3 generators>

57.1-11 LeftActingDomain
‣ LeftActingDomain( D )( attribute )

Let D be an external left set, that is, D is closed under the action of a domain L by multiplication from the left. Then L can be accessed as value of LeftActingDomain for D.

57.2 Submodules

57.2-1 Submodule
‣ Submodule( M, gens[, "basis"] )( function )

is the left module generated by the collection gens, with parent module M. If the string "basis" is entered as the third argument then the submodule of M is created for which the list gens is known to be a list of basis vectors; in this case, it is not checked whether gens really is linearly independent and whether all in gens lie in M.

gap> coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;
gap> V:= LeftModuleByGenerators( GF(16), coll );;
gap> W:= Submodule( V, [ coll[1], coll[2] ] );
<vector space over GF(2^4), with 2 generators>
gap> Parent( W ) = V;
true

57.2-2 SubmoduleNC
‣ SubmoduleNC( M, gens[, "basis"] )( function )

SubmoduleNC does the same as Submodule (57.2-1), except that it does not check whether all in gens lie in M.

57.2-3 ClosureLeftModule
‣ ClosureLeftModule( M, m )( operation )

is the left module generated by the left module generators of M and the element m.

gap> V:= LeftModuleByGenerators(Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ]);
<vector space over Rationals, with 2 generators>
gap> ClosureLeftModule( V, [ 1, 1, 1 ] );
<vector space over Rationals, with 3 generators>

57.2-4 TrivialSubmodule
‣ TrivialSubmodule( M )( attribute )

returns the zero submodule of M.

gap> V:= LeftModuleByGenerators(Rationals, [[ 1, 0, 0 ], [ 0, 1, 0 ]]);;
gap> TrivialSubmodule( V );
<vector space of dimension 0 over Rationals>

57.3 Free Modules

57.3-1 IsFreeLeftModule
‣ IsFreeLeftModule( M )( category )

A left module is free as module if it is isomorphic to a direct sum of copies of its left acting domain.

Free left modules can have bases.

The characteristic (see Characteristic (31.10-1)) of a free left module is defined as the characteristic of its left acting domain (see LeftActingDomain (57.1-11)).

57.3-2 FreeLeftModule
‣ FreeLeftModule( R, gens[, zero][, "basis"] )( function )

FreeLeftModule( R, gens ) is the free left module over the ring R, generated by the vectors in the collection gens.

If there are three arguments, a ring R and a collection gens and an element zero, then FreeLeftModule( R, gens, zero ) is the R-free left module generated by gens, with zero element zero.

If the last argument is the string "basis" then the vectors in gens are known to form a basis of the free module.

It should be noted that the generators gens must be vectors, that is, they must support an addition and a scalar action of R via left multiplication. (See also Section 31.3 for the general meaning of "generators" in GAP.) In particular, FreeLeftModule is not an equivalent of commands such as FreeGroup (37.2-1) in the sense of a constructor of a free group on abstract generators. Such a construction seems to be unnecessary for vector spaces, for that one can use for example row spaces (see FullRowSpace (61.9-4)) in the finite dimensional case and polynomial rings (see PolynomialRing (66.15-1)) in the infinite dimensional case. Moreover, the definition of a "natural" addition for elements of a given magma (for example a permutation group) is possible via the construction of magma rings (see Chapter 65).

gap> V:= FreeLeftModule(Rationals, [[ 1, 0, 0 ], [ 0, 1, 0 ]], "basis");
<vector space of dimension 2 over Rationals>

57.3-3 Dimension
‣ Dimension( M )( attribute )

A free left module has dimension n if it is isomorphic to a direct sum of n copies of its left acting domain.

(We do not mark Dimension as invariant under isomorphisms since we want to call UseIsomorphismRelation (31.13-3) also for free left modules over different left acting domains.)

gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> Dimension( V );
2

57.3-4 IsFiniteDimensional
‣ IsFiniteDimensional( M )( property )

is true if M is a free left module that is finite dimensional over its left acting domain, and false otherwise.

gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> IsFiniteDimensional( V );
true

57.3-5 UseBasis
‣ UseBasis( V, gens )( operation )

The vectors in the list gens are known to form a basis of the free left module V. UseBasis stores information in V that can be derived form this fact, namely

gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> UseBasis( V, [ [ 1, 0 ], [ 1, 1 ] ] );
gap> V;  # now V knows its dimension
<vector space of dimension 2 over Rationals>

57.3-6 IsRowModule
‣ IsRowModule( V )( property )

A row module is a free left module whose elements are row vectors.

57.3-7 IsMatrixModule
‣ IsMatrixModule( V )( property )

A matrix module is a free left module whose elements are matrices.

57.3-8 IsFullRowModule
‣ IsFullRowModule( M )( property )

A full row module is a module R^n, for a ring R and a nonnegative integer n.

More precisely, a full row module is a free left module over a ring R such that the elements are row vectors of the same length n and with entries in R and such that the dimension is equal to n.

Several functions delegate their tasks to full row modules, for example Iterator (30.8-1) and Enumerator (30.3-2).

57.3-9 FullRowModule
‣ FullRowModule( R, n )( function )

is the row module R^n, for a ring R and a nonnegative integer n.

gap> V:= FullRowModule( Integers, 5 );
( Integers^5 )

57.3-10 IsFullMatrixModule
‣ IsFullMatrixModule( M )( property )

A full matrix module is a module R^{[m,n]}, for a ring R and two nonnegative integers m, n.

More precisely, a full matrix module is a free left module over a ring R such that the elements are m by n matrices with entries in R and such that the dimension is equal to m n.

57.3-11 FullMatrixModule
‣ FullMatrixModule( R, m, n )( function )

is the matrix module R^[m,n], for a ring R and nonnegative integers m and n.

gap> FullMatrixModule( GaussianIntegers, 3, 6 );
( GaussianIntegers^[ 3, 6 ] )
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 Bib Ind

generated by GAPDoc2HTML