Constructing morphisms by diagram chases

Sebastian Posur

University of Siegen

July 11, 2016

Outline



Outline

Section 1

Classical diagram chases

What are diagram chases?

What are diagram chases?

Diagram chases are a tool in homological algebra used for proving

What are diagram chases?

Diagram chases are a tool in homological algebra used for proving properties

What are diagram chases?

Diagram chases are a tool in homological algebra used for proving

- properties
- 2 the existence

What are diagram chases?

Diagram chases are a tool in homological algebra used for proving

- properties
- 2 the existence
- of morphisms

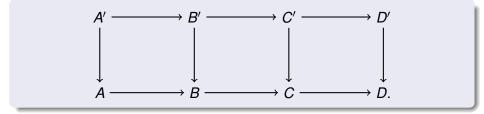
What are diagram chases?

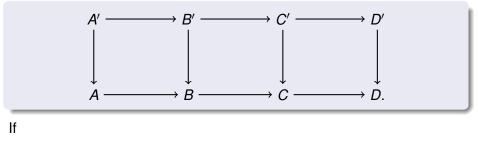
Diagram chases are a tool in homological algebra used for proving

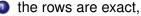
- properties
- 2 the existence

of morphisms situated in (commutative) diagrams of prescribed shape.

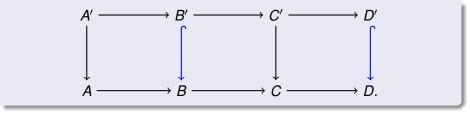
Example: deducing a property







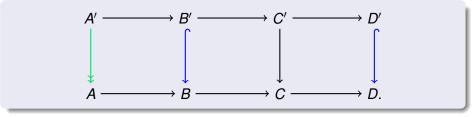
Consider the following commutative diagram of abelian groups:



lf

- the rows are exact,
- 2 the blue maps are injective,

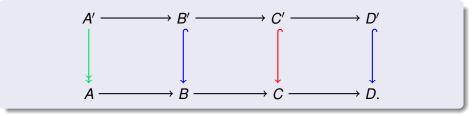
Consider the following commutative diagram of abelian groups:



lf

- the rows are exact,
- the blue maps are injective,
- the green map is surjective,

Consider the following commutative diagram of abelian groups:

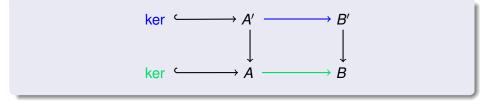


lf

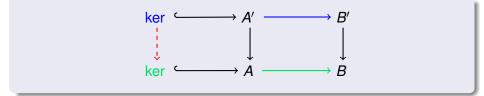
- the rows are exact,
- the blue maps are injective,
- the green map is surjective,

then the red map is injective.

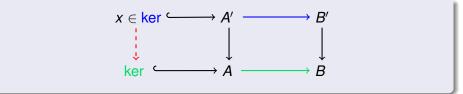
Example: existence of a morphism



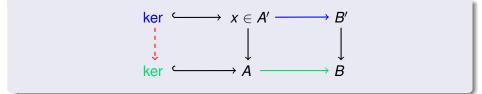
Consider the following commutative diagram of abelian groups:



Consider the following commutative diagram of abelian groups:

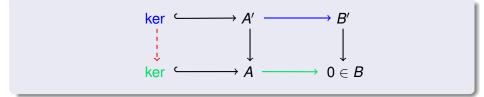


Consider the following commutative diagram of abelian groups:

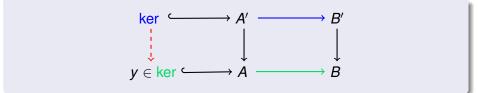


Consider the following commutative diagram of abelian groups:

Consider the following commutative diagram of abelian groups:



Consider the following commutative diagram of abelian groups:



Consider the following commutative diagram of abelian groups:

Consider the following commutative diagram of abelian groups:

Claim: There exists a morphism making the left square commutative.

Because we were working with abelian groups, we were able to use **elements** of their underlying sets.

Consider the following commutative diagram of abelian groups:

Claim: There exists a morphism making the left square commutative.

Because we were working with abelian groups, we were able to use **elements** of their underlying sets. What if we don't have elements?

Abelian categories

Examples of abelian categories

• Category of abelian groups.

- Category of abelian groups.
- Category of modules over a ring.

- Category of abelian groups.
- Category of modules over a ring.
- Category of sheaves of abelian groups on a topological space.

- Category of abelian groups.
- Category of modules over a ring.
- Category of sheaves of abelian groups on a topological space.
- Category of (quasi-)coherent sheaves on a scheme.

- Category of abelian groups.
- Category of modules over a ring.
- Category of sheaves of abelian groups on a topological space.
- Category of (quasi-)coherent sheaves on a scheme.
- Category of chain complexes in an abelian category.

- Category of abelian groups.
- Category of modules over a ring.
- Category of sheaves of abelian groups on a topological space.
- Category of (quasi-)coherent sheaves on a scheme.
- Category of chain complexes in an abelian category.
- Functor categories with values in an abelian category.

- Category of abelian groups.
- Category of modules over a ring.
- Category of sheaves of abelian groups on a topological space.
- Category of (quasi-)coherent sheaves on a scheme.
- Category of chain complexes in an abelian category.
- Functor categories with values in an abelian category.
- Any category equivalent to an abelian category.

- Category of abelian groups.
- Category of modules over a ring.
- Category of sheaves of abelian groups on a topological space.
- Category of (quasi-)coherent sheaves on a scheme.
- Category of chain complexes in an abelian category.
- Functor categories with values in an abelian category.
- Any category equivalent to an abelian category. Change of underlying data structures:

Examples of abelian categories

- Category of abelian groups.
- Category of modules over a ring.
- Category of sheaves of abelian groups on a topological space.
- Category of (quasi-)coherent sheaves on a scheme.
- Category of chain complexes in an abelian category.
- Functor categories with values in an abelian category.
- Any category equivalent to an abelian category. Change of underlying data structures:

finite dimensional vector spaces $\longleftrightarrow \mathbb{N}_0$

Axioms of an abelian category

Axioms of an abelian category

Axioms of an abelian category

Some operations in abelian categories

 $\bullet \ \oplus : Obj \times Obj \rightarrow Obj$

Axioms of an abelian category

- $\bullet \ \oplus : Obj \times Obj \rightarrow Obj$
- ZeroObject : () \rightarrow Obj

Axioms of an abelian category

- $\bullet \ \oplus : Obj \times Obj \to Obj$
- ZeroObject : () \rightarrow Obj
- \circ : Hom(B, C) × Hom(A, B) \rightarrow Hom(A, C)

- \oplus : Obj × Obj → Obj
- ZeroObject : () \rightarrow Obj
- \circ : Hom(B, C) × Hom(A, B) \rightarrow Hom(A, C)
- + : Hom(A, B) × Hom(A, B) → Hom(A, B)

- \oplus : Obj × Obj → Obj
- ZeroObject : () \rightarrow Obj
- \circ : Hom(*B*, *C*) × Hom(*A*, *B*) \rightarrow Hom(*A*, *C*)
- + : Hom(A, B) × Hom(A, B) → Hom(A, B)
- ker : Mor \rightarrow Obj

- \oplus : Obj × Obj → Obj
- ZeroObject : () \rightarrow Obj
- \circ : Hom(*B*, *C*) × Hom(*A*, *B*) \rightarrow Hom(*A*, *C*)
- + : Hom(A, B) × Hom(A, B) → Hom(A, B)
- ker : Mor \rightarrow Obj
- coker : Mor \rightarrow Obj

- \oplus : Obj × Obj → Obj
- ZeroObject : () \rightarrow Obj
- \circ : Hom(B, C) × Hom(A, B) \rightarrow Hom(A, C)
- + : Hom(A, B) × Hom(A, B) → Hom(A, B)
- ker : Mor \rightarrow Obj
- coker : Mor \rightarrow Obj

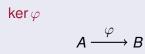
Let φ be a morphism.

Let φ be a morphism.

Let φ be a morphism. To handle the kernel of φ algorithmically \dots

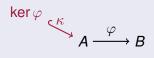
Let φ be a morphism. To handle the kernel of φ algorithmically \dots

... one has to construct the object ker φ ,



Let φ be a morphism. To handle the kernel of φ algorithmically \dots

... one has to construct the object ker φ , its embedding into the object *A*,



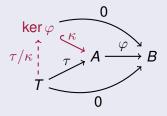
Let φ be a morphism. To handle the kernel of φ algorithmically \dots

... one has to construct the object ker φ , its embedding into the object *A*, and for every test morphism $\tau : T \to A$



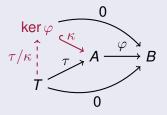
Let φ be a morphism. To handle the kernel of φ algorithmically . . .

... one has to construct the object $\ker \varphi$, its embedding into the object *A*, and for every test morphism $\tau : T \to A$ a morphism given by $\ker \varphi$'s universal property.



Let φ be a morphism. To handle the kernel of φ algorithmically . . .

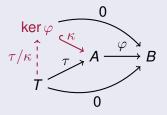
... one has to construct the object $\ker \varphi$, its embedding into the object *A*, and for every test morphism $\tau : T \to A$ a morphism given by $\ker \varphi$'s universal property.



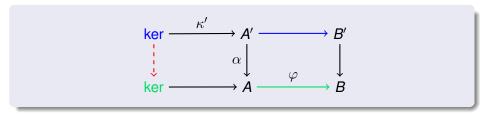
• KernelEmbedding(φ) = κ

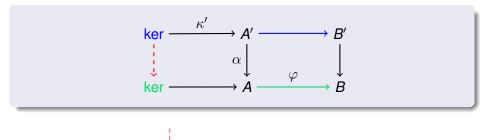
Let φ be a morphism. To handle the kernel of φ algorithmically . . .

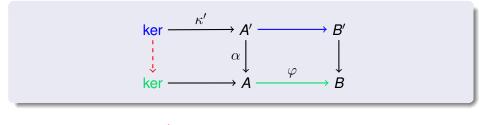
... one has to construct the object $\ker \varphi$, its embedding into the object *A*, and for every test morphism $\tau : T \to A$ a morphism given by $\ker \varphi$'s universal property.

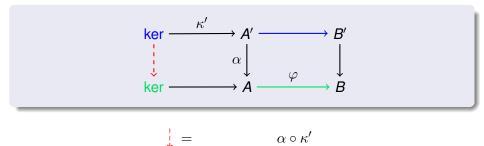


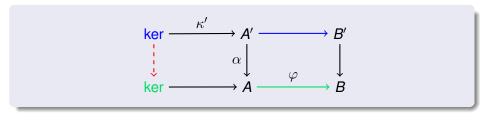
- KernelEmbedding(φ) = κ
- KernelLift(φ, τ) = τ/κ





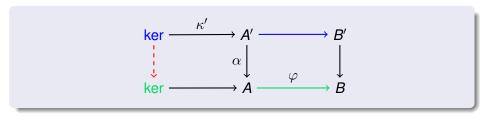






$$=$$
 KernelLift($\varphi, \alpha \circ \kappa'$)

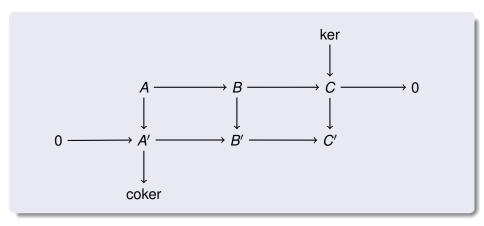
Example: existence of a morphism,



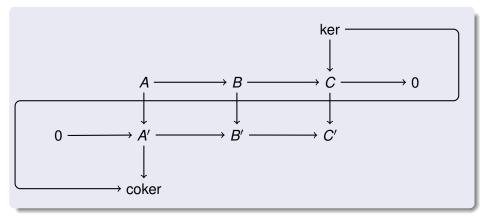
$$= \mathsf{KernelLift}(\varphi, \alpha \circ \kappa')$$

What do we do when the diagrams become larger?

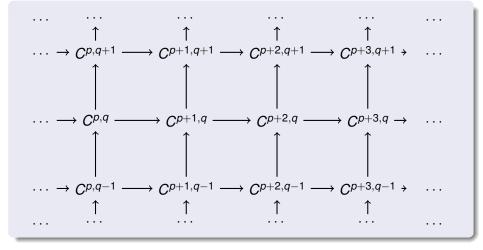
A larger diagram



A larger diagram



An arbitrarily large diagram



Classical solutions: embedding theorems

Classical solutions: embedding theorems

The group valued embedding theorem (Mitchell)

Classical solutions: embedding theorems

The group valued embedding theorem (Mitchell)

Any small abelian category A admits an exact covariant embedding

$$\textit{F}: \textbf{A} \hookrightarrow \textbf{Ab}$$

into the category of abelian groups.

Classical solutions: embedding theorems

The group valued embedding theorem (Mitchell)

Any small abelian category A admits an exact covariant embedding

 $\textit{F}: \textbf{A} \hookrightarrow \textbf{Ab}$

into the category of abelian groups.

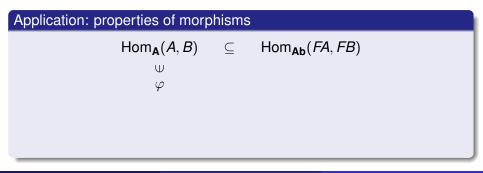
Application: properties of morphisms

 $\operatorname{Hom}_{\mathbf{A}}(A, B) \subseteq \operatorname{Hom}_{\mathbf{Ab}}(FA, FB)$

The group valued embedding theorem (Mitchell)

Any small abelian category A admits an exact covariant embedding

 $\textit{F}: \textbf{A} \hookrightarrow \textbf{Ab}$



The group valued embedding theorem (Mitchell)

Any small abelian category A admits an exact covariant embedding

 $\textit{F}: \textbf{A} \hookrightarrow \textbf{Ab}$

Application: properties of morp	hisms		
Hom _A (A, B)	\subseteq	Hom _{Ab} (FA, FB)	
Ψ		Ψ	
arphi	\mapsto	$m{F}arphi$	

The group valued embedding theorem (Mitchell)

Any small abelian category A admits an exact covariant embedding

 $\textit{F}: \textbf{A} \hookrightarrow \textbf{Ab}$

Application: properties of morp	ohisms		
Hom _A (A, B)	\subseteq	Hom _{Ab} (FA, FB)	
Ψ		Ψ	
arphi	\mapsto	$oldsymbol{F}arphi$	
mono	\leftrightarrow	mono	

The group valued embedding theorem (Mitchell)

Any small abelian category A admits an exact covariant embedding

 $\textit{F}: \textbf{A} \hookrightarrow \textbf{Ab}$

Application: properties of morp	hisms		
Hom _A (A, B)	\subseteq	Hom _{Ab} (FA, FB)	
Ψ		Ψ	
arphi	\mapsto	$oldsymbol{F}arphi$	
mono	\leftrightarrow	mono	
epi	\leftrightarrow	epi	

The group valued embedding theorem (Mitchell)

Any small abelian category A admits an exact covariant embedding

 $\textit{F}: \textbf{A} \hookrightarrow \textbf{Ab}$

Application: properties of morp	hisms		
Hom _A (A, B)	\subseteq	Hom _{Ab} (FA, FB)	
Ψ		Ψ	
arphi	\mapsto	$m{F}arphi$	
mono	\leftrightarrow	mono	
epi	\leftrightarrow	epi	
iso	\leftrightarrow	iso	

Classical diagram chases

Classical solutions: embedding theorems

Classical diagram chases

Classical solutions: embedding theorems

Freyd-Mitchell embedding theorem

Freyd-Mitchell embedding theorem

Any small abelian category **A** admits an exact fully faithful covariant embedding

 $F: \mathbf{A} \hookrightarrow R - \mathbf{mod}$

into the category of *R*-modules for some ring *R*.

Freyd-Mitchell embedding theorem

Any small abelian category **A** admits an exact fully faithful covariant embedding

 $F: \mathbf{A} \hookrightarrow R - \mathbf{mod}$

into the category of *R*-modules for some ring *R*.

Application: existence of morphisms

 $\operatorname{Hom}_{\mathbf{A}}(A, B) \cong \operatorname{Hom}_{R-\operatorname{mod}}(FA, FB)$

Freyd-Mitchell embedding theorem

Any small abelian category **A** admits an exact fully faithful covariant embedding

 $F: \mathbf{A} \hookrightarrow R - \mathbf{mod}$

into the category of *R*-modules for some ring *R*.

Application: existence of morphisms

$$\mathsf{Hom}_{\mathbf{A}}(\mathbf{A}, \mathbf{B}) \cong \mathsf{Hom}_{\mathbf{R}-\mathbf{mod}}(\mathbf{F}\mathbf{A}, \mathbf{F}\mathbf{B})$$

$$\stackrel{\mathbb{U}}{\varphi}$$

Freyd-Mitchell embedding theorem

Any small abelian category **A** admits an exact fully faithful covariant embedding

 $F: \mathbf{A} \hookrightarrow R - \mathbf{mod}$

into the category of *R*-modules for some ring *R*.

Application: existence of morphisms

$Hom_{\mathbf{A}}(\mathbf{A}, \mathbf{B})$	\cong	$Hom_{R-mod}(\mathit{FA}, \mathit{FB})$
Ψ		Ψ
${\cal F}^{-1}arphi$	+	$\rightarrow \qquad \varphi$

Freyd-Mitchell embedding theorem

Any small abelian category **A** admits an exact fully faithful covariant embedding

$$F: \mathbf{A} \hookrightarrow R - \mathbf{mod}$$

into the category of *R*-modules for some ring *R*.

Application: existence of morphisms

$Hom_{\mathbf{A}}(\mathbf{A}, \mathbf{B})$	\cong	Hom _{<i>R</i>-mod} (<i>FA</i> , <i>FB</i>)
Ψ		Ψ
$F^{-1}arphi$	÷	$\rightarrow \qquad \varphi$

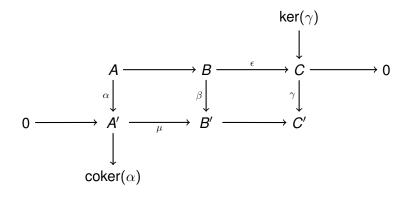
Problem: This isomorphism between Hom-sets is not constructive.

osur	

Section 2

Constructive diagram chases

Connecting homomorphism in the snake lemma

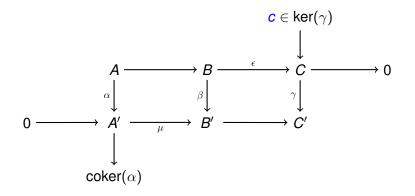


Wanted: ker
$$(\gamma) \xrightarrow{\partial} \operatorname{coker}(\alpha)$$
.

Posur

July 11, 2016 16 / 33

Connecting homomorphism in the snake lemma

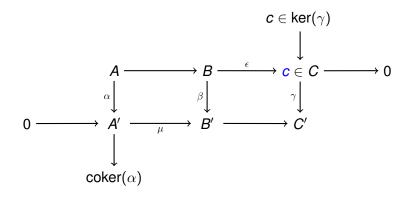


Start: $c \in ker(\gamma)$.

Posur

July 11, 2016 16 / 33

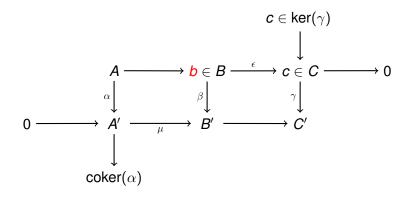
Connecting homomorphism in the snake lemma



This lies in C.

P	osur	
	usui	

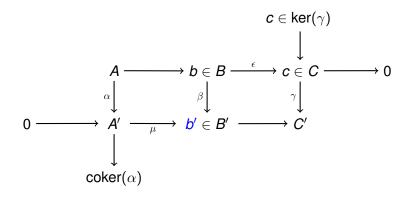
Connecting homomorphism in the snake lemma



Choose: $b \in e^{-1}(\{c\})$.

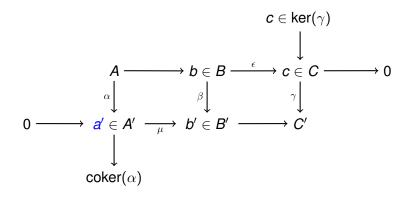
Posur

Connecting homomorphism in the snake lemma



Map:
$$b \stackrel{\beta}{\mapsto} b'$$
.

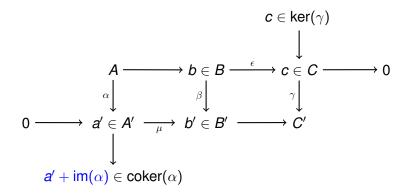
Connecting homomorphism in the snake lemma



Compute:
$$a' \in \mu^{-1}(b')$$
.

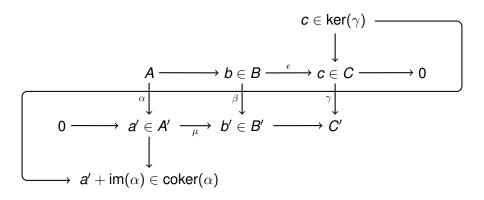
Posur

Connecting homomorphism in the snake lemma



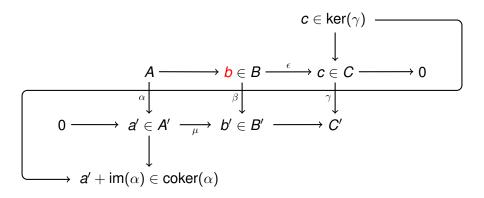
Map: $a' \mapsto a' + \operatorname{im}(\alpha)$.

Connecting homomorphism in the snake lemma



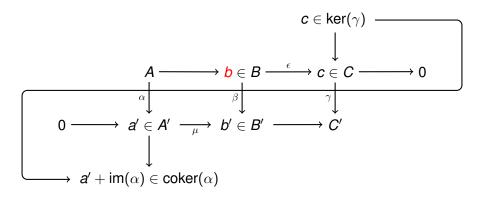
Result: $c \stackrel{\partial}{\mapsto} a' + \operatorname{im}(\alpha)$.

Connecting homomorphism in the snake lemma



Result: $c \stackrel{\partial}{\mapsto} a' + im(\alpha)$. Independent of the choice.

Connecting homomorphism in the snake lemma



Idea: use relations instead of maps. $c \mapsto \epsilon^{-1}(\{c\})$

Posur

Let *A*, *B* be abelian groups.

Let A, B be abelian groups.

Definition

A subgroup $f \subseteq A \oplus B$ is called a **relation from** A to B.

Let A, B be abelian groups.

Definition

A subgroup $f \subseteq A \oplus B$ is called a **relation from** A **to** B.

Example

Let $\epsilon : B \to C$ be a homomorphism of abelian groups.

Let A, B be abelian groups.

Definition

A subgroup $f \subseteq A \oplus B$ is called a **relation from** A to B.

Example

Let $\epsilon : B \to C$ be a homomorphism of abelian groups.

$$\Gamma(\epsilon) := \{ (b, c) \in B \oplus C \mid \epsilon(b) = c \}$$

is a relation from B to C

Let *A*, *B* be abelian groups.

Definition

A subgroup $f \subseteq A \oplus B$ is called a **relation from** A to B.

Example

Let $\epsilon : B \to C$ be a homomorphism of abelian groups.

$$\Gamma(\epsilon) := \{(b, c) \in B \oplus C \mid \epsilon(b) = c\}$$

is a relation from *B* to *C*, called graph of ϵ

Let *A*, *B* be abelian groups.

Definition

A subgroup $f \subseteq A \oplus B$ is called a **relation from** A to B.

Example

Let $\epsilon : B \to C$ be a homomorphism of abelian groups.

$${\sf F}(\epsilon):=\{(b,c)\in B\oplus C\mid \epsilon(b)=c\}$$

is a relation from B to C, called graph of ϵ , and

$$\epsilon^{-1} := \{({m{c}},{m{b}}) \in {m{C}} \oplus {m{B}} \mid \epsilon({m{b}}) = {m{c}}\}$$

is a relation from C to B

Let *A*, *B* be abelian groups.

Definition

A subgroup $f \subseteq A \oplus B$ is called a **relation from** A to B.

Example

Let $\epsilon : B \to C$ be a homomorphism of abelian groups.

$${\sf F}(\epsilon):=\{(b,c)\in B\oplus C\mid \epsilon(b)=c\}$$

is a relation from B to C, called graph of ϵ , and

$$\epsilon^{-1} := \{({m{c}},{m{b}}) \in {m{C}} \oplus {m{B}} \mid \epsilon({m{b}}) = {m{c}}\}$$

is a relation from C to B, called **pseudo-inverse of** ϵ .

Composition of relations

Composition of relations

Given $f \subseteq A \oplus B$ and $g \subseteq B \oplus C$, define

Composition of relations

Given $f \subseteq A \oplus B$ and $g \subseteq B \oplus C$, define

$$g \circ f := \{(a,c) \in A \oplus C \mid \exists b \in B : (a,b) \in f, (b,c) \in g\}$$

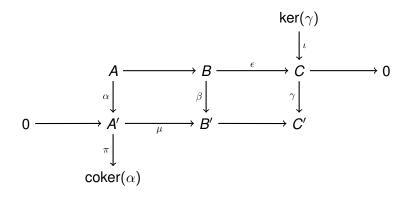
Composition of relations

Given $f \subseteq A \oplus B$ and $g \subseteq B \oplus C$, define

$$g \circ f := \{(a,c) \in A \oplus C \mid \exists b \in B : (a,b) \in f, (b,c) \in g\}$$

If *f* and *g* correspond to maps, this describes their usual composition.

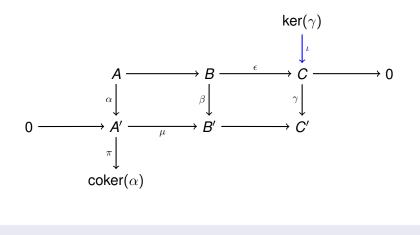
Snake lemma revisited



Wanted: ker
$$(\gamma) \xrightarrow{\partial} \operatorname{coker}(\alpha)$$
.

Posur

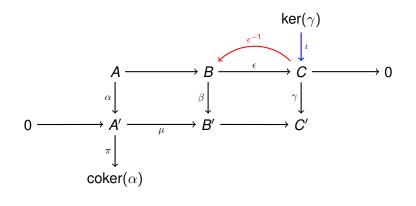
Snake lemma revisited



Posur

L

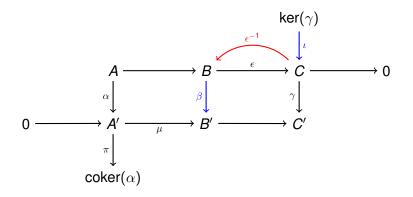
Snake lemma revisited



 $\epsilon^{-1} \circ \iota$

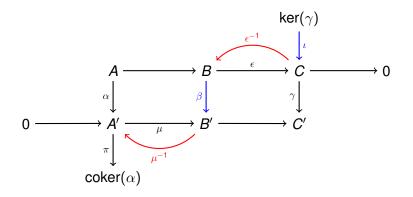
-		
ч	osur	

Snake lemma revisited



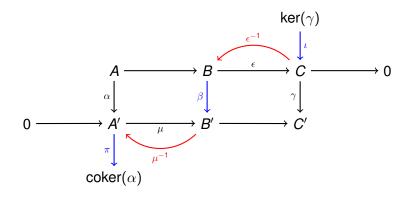
$$\beta \circ \epsilon^{-1} \circ \iota$$

Snake lemma revisited



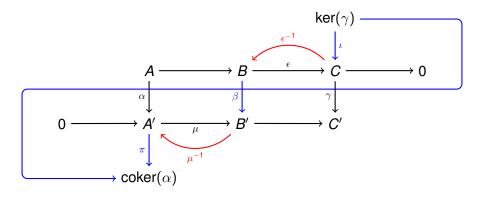
$$\mu^{-1} \circ \beta \circ \epsilon^{-1} \circ \iota$$

Snake lemma revisited



$$\pi \circ \mu^{-1} \circ \beta \circ \epsilon^{-1} \circ \iota$$

Snake lemma revisited



∂ is a composition of relations!

Р	os	ur

Constructing morphisms

From relations to generalized morphisms

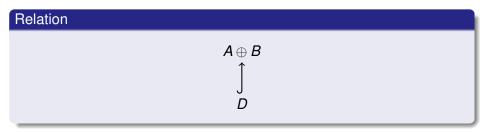
• Wanted: a categorical framework for relations.

From relations to generalized morphisms

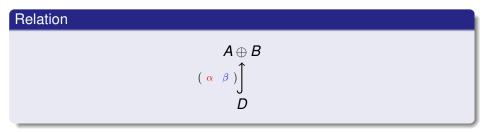
- Wanted: a categorical framework for relations.
- Solution: generalized morphisms.

From relations to generalized morphisms

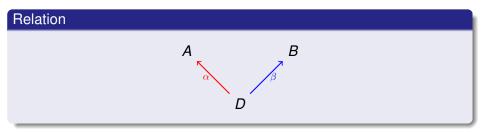
From relations to generalized morphisms



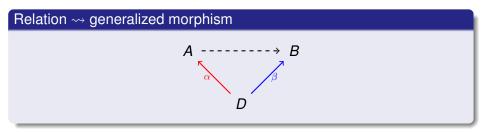
From relations to generalized morphisms



From relations to generalized morphisms



From relations to generalized morphisms



Let A, B be objects in an abelian category A.

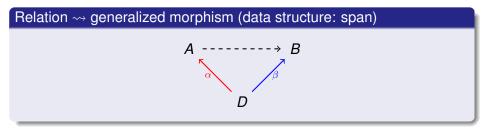
Relation \rightsquigarrow generalized morphism (data structure: span) $A \xrightarrow{\alpha} B$ D

Let A, B be objects in an abelian category A.

Relation \rightsquigarrow generalized morphism (data structure: span) $A \xrightarrow{\beta} B$ D

Equality

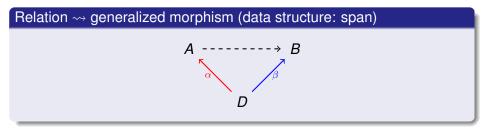
Let A, B be objects in an abelian category A.



Equality

Two spans (α, β) and (α', β') are equal as generalized morphisms if

Let A, B be objects in an abelian category A.

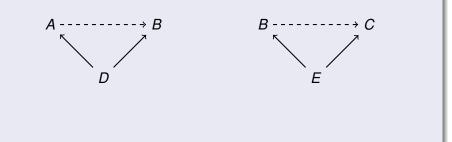


Equality

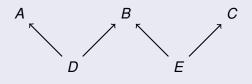
Two spans (α, β) and (α', β') are equal as generalized morphisms if

$$\operatorname{\mathsf{im}}((\alpha,\beta):D\to A\oplus B)=\operatorname{\mathsf{im}}((\alpha',\beta'):D'\to A\oplus B).$$

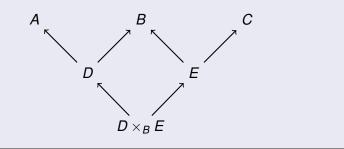
Composition of generalized morphisms



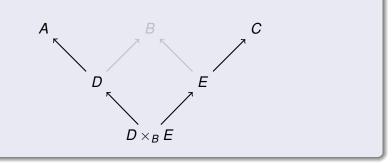
Composition of generalized morphisms



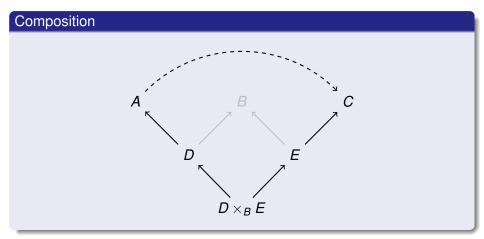
Composition of generalized morphisms



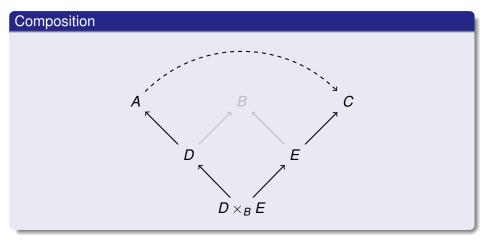
Composition of generalized morphisms



Composition of generalized morphisms

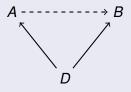


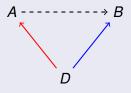
Composition of generalized morphisms

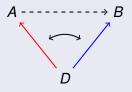


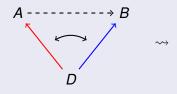
\rightsquigarrow Category of generalized morphisms G(A)

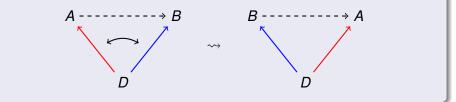
Р	osur	
	usui	











Honest morphisms

Honest morphisms

A embeds into G(A):

Honest morphisms

A embeds into G(A):

 $A \longrightarrow B$

Honest morphisms

A embeds into G(A):

$A \longrightarrow B \mapsto$

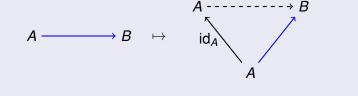
Honest morphisms

A embeds into G(A):



Honest morphisms

A embeds into G(A):



Generalized morphisms equal to such a span are called **honest**.

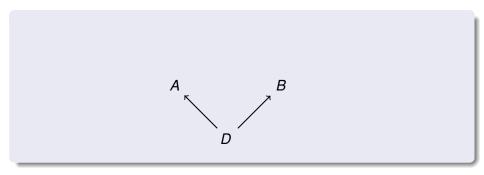
Computing representatives

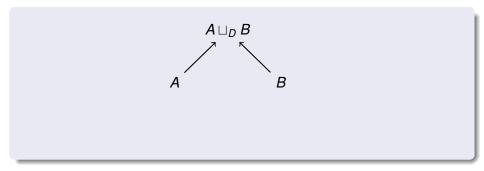
Computing representatives

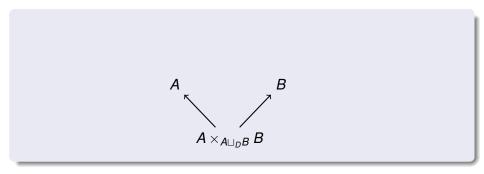
Given an honest generalized morphism in G(A), compute the corresponding morphism in A.

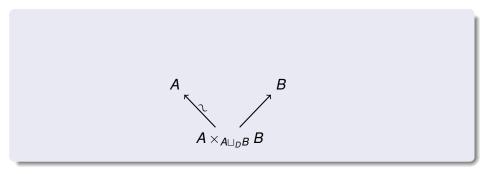
Computing representatives

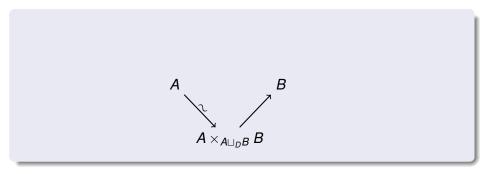
Given an honest generalized morphism in G(A), compute the corresponding morphism in A.

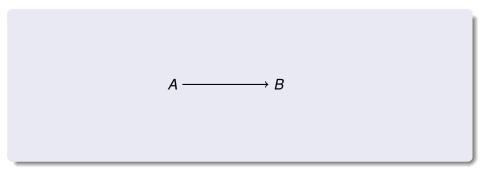


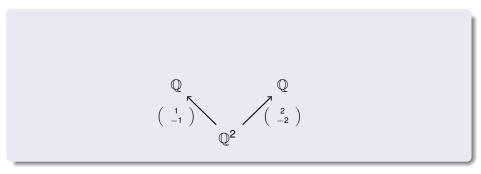


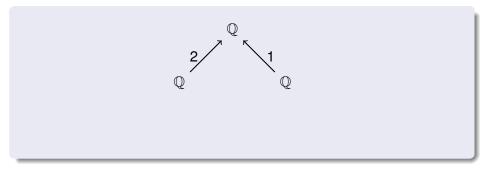


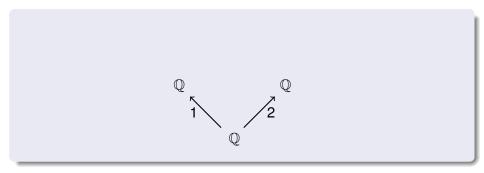


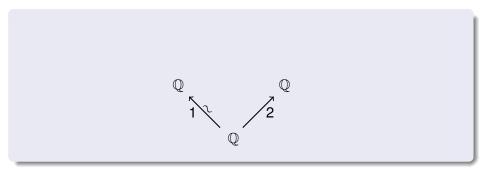


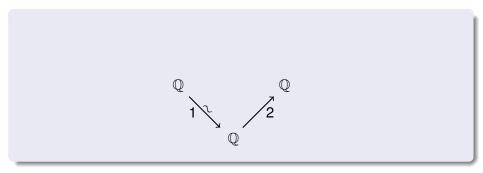


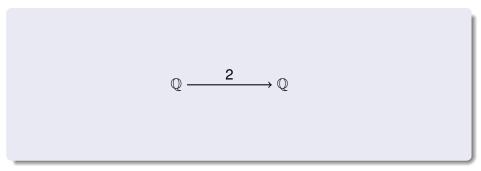












Constructive diagram chases

Constructive diagram chases

Strategy for constructive diagram chases

Constructive diagram chases

Strategy for constructive diagram chases

Compute in G(A) using pseudo-inverses and compositions.

Constructive diagram chases

Strategy for constructive diagram chases

- Compute in G(A) using pseudo-inverses and compositions.
- Compute the honest representative of the resulting generalized morphism.

Section 3

Constructive spectral sequences

Spectral sequences of bicomplexes

Spectral sequences of bicomplexes

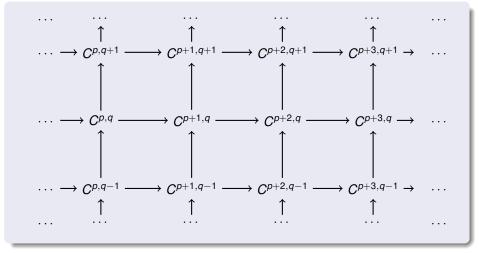
• Every cohomological bicomplex gives rise to a cochain complex, its total cochain complex.

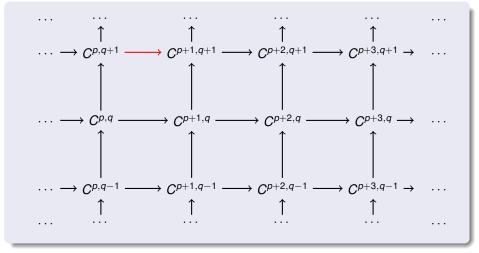
Spectral sequences of bicomplexes

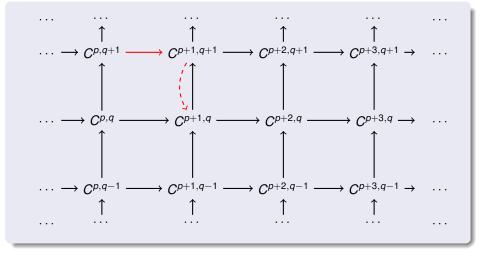
- Every cohomological bicomplex gives rise to a cochain complex, its total cochain complex.
- The total cochain complex admits canonical filtrations.

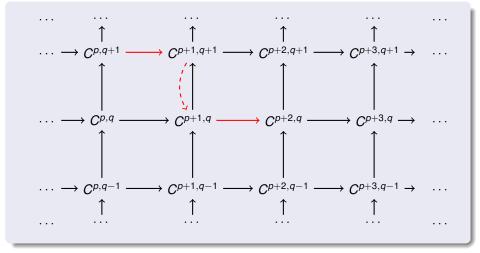
Spectral sequences of bicomplexes

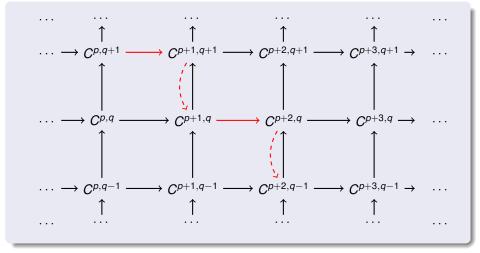
- Every cohomological bicomplex gives rise to a cochain complex, its total cochain complex.
- The total cochain complex admits canonical filtrations.
- We can compute the associated spectral sequences.

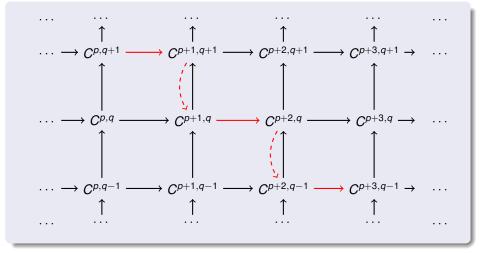


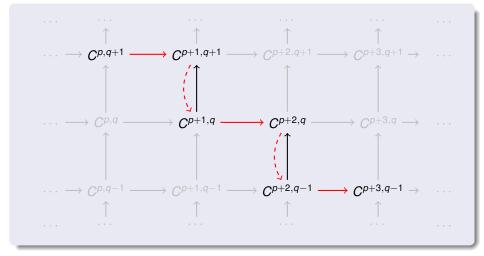


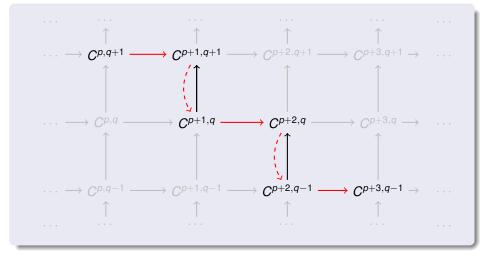


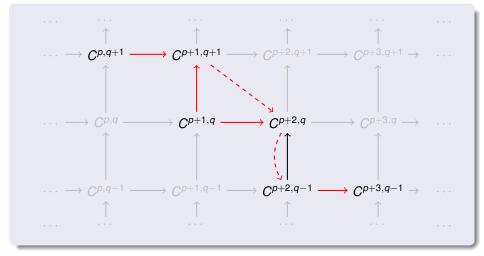


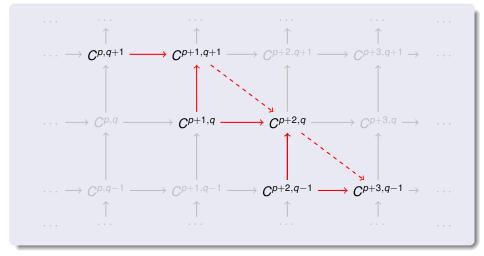


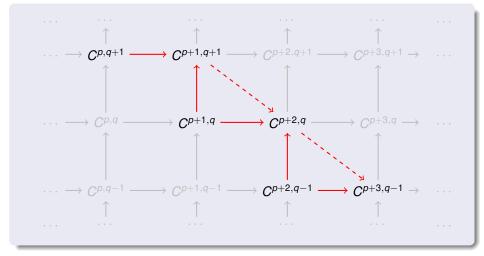


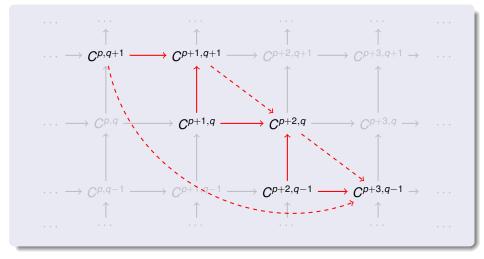












Spectral sequences for bicomplexes

Spectral sequences for bicomplexes

Spectral sequences for bicomplexes

$$C^{p,q+1} \xrightarrow{} C^{p+3,q+1}$$

Spectral sequences for bicomplexes

$$E_3^{p,q+1} \hookrightarrow C^{p,q+1} \dashrightarrow C^{p+3,q+1}$$

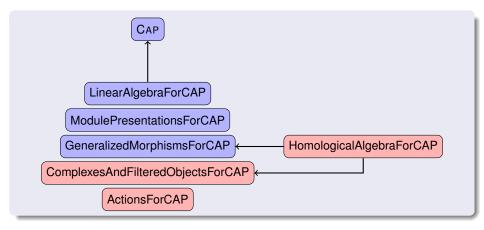
Spectral sequences for bicomplexes

$$E_3^{p,q+1} \hookrightarrow C^{p,q+1} \dashrightarrow C^{p+3,q+1} \dashrightarrow E_3^{p+3,q+1}$$

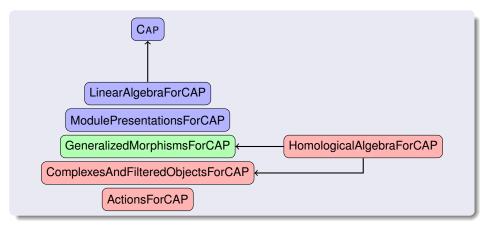
Spectral sequences for bicomplexes

$$d_3^{p,q+1}: E_3^{p,q+1} \hookrightarrow C^{p,q+1} \dashrightarrow C^{p+3,q+1} \dashrightarrow E_3^{p+3,q+1}$$

CAP Packages



CAP Packages



Download CAP

Download CAP

http://homalg-project.github.io/CAP_project/